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Abstract 

This paper presents a modelling methodology for a cantilevered energy harvester with partial piezoelectric coverage and 

shunted to practical power conditioning interface circuits. Firstly, the distributed parameter model of the partially covered 

piezoelectric energy harvester is developed and the associated analytical solution is derived. Subsequently, the single-degree-

of-freedom (SDOF) representation model is developed and the explicit expressions of equivalent lumped parameters are 

derived by taking the static-deflection as the approximated fundamental vibration mode. Based on the comparison with the 

single mode expression of the distributed parameter model, a correction factor is proposed to improve the accuracy of the 

SDOF model. The results of both the distributed parameter and the corrected SDOF models are compared. The accuracy of 

the corrected SDOF representation model is verified against the analytical and the finite element models. Finally, practical 

interface circuits including the standard energy harvesting (SEH) circuit and the parallel synchronized switch harvesting on 

inductor (P-SSHI) circuit are considered. A modified equivalent impedance modelling (EIM) method is proposed for the 

analysis of the SEH and P-SSHI circuits. The results of the modified EIM method are verified against the existing method in 

the literature. 

1. Introduction 

Vibration energy harvesting has attracted significant research interests in the last decade (Hu 

et al., 2017; Hu et al., 2018; Tao et al., 2018; Wu et al., 2018; Zhou et al., 2018), as this 

technology has a promising potential for enabling widely utilized micro-electromechanical 

systems (MEMS) to substitute for electrochemical batteries in the circumstances where 

environmental vibrations exist. A comprehensive study of a practical energy harvester often 

requires the consideration of both mechanical and electrical aspects. Hence, reliable 

modelling methods for both the mechanical structures and electronic interface circuits 

constitute the fundamentals aspects of research in this field. In addition, bridging the 

mechanical and electrical models is essential to achieve accurate estimation.  

 

One of the most typical designs of piezoelectric energy harvesters (PEHs) is a cantilevered 

beam covered with a single or multiple piezoelectric transducers. When such a structure is 
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excited around its resonance frequencies (especially the fundamental one), the cantilevered 

PEH could deliver a maximum power output. Several modelling methods have been proposed 

for describing the behavior of this type of PEHs and predicting the energy harvesting 

performance. Yang et al. (2009) proposed an equivalent circuit representation for the 

cantilevered PEH. The advantage of this modelling method is that the equivalent circuit 

representation of the mechanical structure enables the mechanical and the electrical parts of 

the PEH system to be bridged, which can incorporate complicated nonlinear circuits. 

However, in their model, the piezoelectric layer was assumed to cover the entire cantilevered 

beam. Erturk et al. (2008a) developed the distributed parameter model of the cantilevered 

PEH and derived the closed-form analytical solution. However, the piezoelectric layer was 

also assumed to cover the entire substrate. Originated from the distributed parameter solution 

given by (Erturk et al., 2008a), some researchers adopted the single mode approximation for 

simplicity (Stanton et al., 2010). The accuracy of the single-mode model in the vicinity of the 

fundamental mode of interest has been proved (Erturk et al., 2009). As a simpler alternative to 

the single-mode model, the SDOF model (duToit et al., 2005; Liu et al., 2012; Liu et al., 2016; 

Priya, 2007; Shu et al., 2006; Tang et al., 2012; Xu et al., 2015; Yang et al., 2013) has been 

widely adopted by researchers. Although the explicit expressions of the equivalent lumped 

parameters were provided in (Kim et al., 2011; Shu et al., 2006), the results are valid under 

the assumption of full piezoelectric coverage. Tang et al. (2012) presented a physical 

prototype with partial piezoelectric coverage, however, the equivalent lumped parameters 

were determined from the experiments. Other literature that involves the utilization of the 

SDOF model includes (Lan et al., 2018a; Lan et al., 2018b; Yang et al., 2013; Zhou et al., 

2013), to name a few. Based on the literature review, it is found that though the distributed 

parameter models of cantilevered energy harvesters with partial piezoelectric coverage have 

been derived by e.g., (Abdelkefi et al., 2014; Zhao et al., 2015), all the studies of SDOF 

models have been conducted under the assumption of full piezoelectric coverage. The explicit 

expressions for the equivalent lumped parameters of the SDOF model of the cantilevered 

PEH with partial piezoelectric coverage have not been yet derived. Besides the issue of 

ignoring of partial piezoelectric coverage, Erturk et al. (2007) pointed out that the commonly 

used SDOF model may yield a significant prediction error and underestimate the dynamic 

motion of the system. Based on the comparison between the expressions of the transmittances 

obtained from the analytical and SDOF models, a correction factor has been proposed to 

improve the accuracy of the SDOF model. However, this work concentrated on only a pure 
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mechanical model without the inclusion of the piezoelectric element (Erturk et al., 2007, 

2008b). Thus, the corrected SDOF model is only applicable for predicting the dynamic 

motion of the cantilevered beam without taking the piezoelectric effect into account. 

Therefore, the main aim of the present paper is to develop a robust SDOF model of the 

cantilevered PEH with partially covered piezoelectric layer for predicting energy harvesting 

performance. 

In addition, practical design of a PEH often requires a standard energy harvesting circuit (i.e., 

an AC-DC interface circuit) (Lefeuvre et al., 2005) to power real applications, or sometimes a 

complicated nonlinear interface circuit for efficiency improvement, such as synchronized 

charge extraction (SCE) (Liu et al., 2018; Zhao et al., 2016), synchronized switch harvesting 

on inductor (SSHI) (Guyomar et al., 2005a; Liang et al., 2012; Shu et al., 2007), etc. The 

existence of the complicated interface circuits poses difficulties to investigate the energy 

harvesting performance analytically (Yang et al., 2009). The simplest way to evaluate the 

power output of a PEH shunted to a SEH interface circuit is to uncouple the mechanical and 

electrical parts (Shu et al., 2006). However, this method is only valid for weakly coupled 

systems. A method for estimating the energy harvesting output of a PEH shunted to a SEH or 

P-SSHI circuit is presented in (Guyomar et al., 2005b) by assuming that the external forcing 

function and the velocity of the mass are in phase. It can be anticipated that the in-phase 

assumption is only valid in limited circumstances where the electro-mechanical coupling is 

not strong and the operating point is around resonance. Shu et al. (2006) later proposed a 

method to model PEHs with SEH interface circuit that was accurate for both weak and strong 

couplings. By comparing the simulation and experimental results, the reliability of that 

method was confirmed. Based on the same approach, Shu et al. (2007) extended this method 

for the analysis of the Parallel-SSHI interface circuit. From another point of view, by using 

the harmonic decomposition method and only taking the fundamental component, an 

equivalent impedance modelling (EIM) method was proposed in (Liang et al., 2012). This 

method was capable of analyzing the SEH, Parallel-SSHI and Series-SSHI interface circuits 

even for strong coupling cases. The EIM method represents the interface circuit by an 

equivalent impedance. The energies consumed by different components of the equivalent 

impedance have different corresponding physical meanings. Thus the EIM method provides a 

much clearer view of the energy flow in the energy harvesting system which is the advantage 

over the method in (Shu et al., 2006; Shu et al., 2007). However, the main drawback of the 

EIM method is that the final expression of the harvested power is a function of the rectifier 
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block angle and it cannot calculate the rectified voltage. So this paper also aims to improve 

the EIM method. The improved the EIM method is expected to inherit the advantages of both 

the original EIM method and the method presented in (Shu et al., 2006; Shu et al., 2007). 

Together with the proposed SDOF representation method, this paper develops a 

comprehensive modelling technique of a cantilevered PEH with partial piezoelectric coverage 

shunted to a SEH/P-SSHI interface circuit.  

 

The rest of this paper is organized as follows: in section 2, the distributed parameter model of 

the cantilevered energy harvester with partial piezoelectric coverage is developed and the 

closed-form solution is obtained. The procedure for developing the SDOF model is then 

demonstrated in section 3. For the sake of simplicity to derive the explicit expressions of 

several equivalent parameters, the static deflection is used as the approximation of the 

fundamental vibration mode in the derivation. To further improve the accuracy of the SDOF 

model, a correction factor is derived to increase the accuracy of prediction of the SDOF 

model. In section 4, the corrected SDOF model is compared with the distributed parameter 

model and the finite element model for verification. To include the features of practical 

interface circuits, a modified EIM method is proposed in section 5 for the analysis of the SEH 

and P-SSHI interface circuits. The predicted results of the modified EIM method are 

discussed and compared with those of the methods from (Shu et al., 2006; Shu et al., 2007) in 

section 6. 

2. Distributed parameter model 

The distributed parameter model of the partially covered piezoelectric energy harvester and its 

analytical solution in section 2 are not brand new. Similar work has already been reported in 

the existing literature such as (Abdelkefi et al., 2014; Zhao et al., 2015). However, for the 

sake of completeness and the ease of understanding for the readers, the modelling process is 

reviewed. The subsequent work of developing the simplified SDOF representation model will 

need to utilize part of the main conclusions derived from the distributed parameter model.  
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Figure 1. (a) Schematic of the cantilevered PEH with partial piezoelectric coverage; (b) the cross-

section view. 

The schematic of the system under investigation is shown in Figure 1(a). The left side of the 

beam is clamped to the base. The thickness and length of the host beam are hs and L 

(L=L1+L2), respectively. It is covered by a piezoelectric layer of thickness hp and length L1. 

The piezoelectric transducer is connected to a resistive load ACR . The subscripts s and p 

denote the host beam and the piezoelectric layer, respectively. The subscripts 1 and 2 

represent the subsections with and without the piezoelectric layer, respectively. A 

concentrated mass of Mt is attached at the tip of the beam to tune its fundamental natural 

frequency. Figure 1(b) shows the cross-section view of the beam, where ha is the position of 

the bottom of the substrate layer to the neutral axis. The widths of the host beam and the 

piezoelectric layer are bs and bp, respectively. hb and hc are the positions of the bottom and top 

of the piezoelectric layer to the neutral axis, respectively. These position parameters can be 

calculated from the material and geometric properties of the beam by the following relations. 

 

 
 

22

2

s pp p p s s s

a

p p p s s s

b s a

c p b

h hE b h E b h
h

E b h E b h

h h h

h h h

 
 




 
  

  (1) 
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where Es and Ep are the Young’s moduli of the host beam and piezoelectric layer, respectively. 

The cantilevered beam is excited transversely (vertically in z direction) due to the motion of 

the base (  bw t ). The governing equations of the beam for the sections with and without the 

piezoelectric layer are written as (Zhao et al., 2013): 

 

   
 

     

   
 

 

4 2 2
1 11 1 1 1 1

1 1 14 2 2

1 1 1

4 2 2
2 22 2

2 2 2 2 24 2 2

2

, ,

, ,

b

b
t

w wx t x t d dx x L w t
EI m v mt

x t tdx dx

w wx t x t w t
EI m m M x L

x t t

 




     
      

    


  
         

  (2) 

where  1 1,w x t  and  2 2 ,w x t  represent the relative displacements to the base motion of the 

beam sections in 1 10 x L   and 2 20 x L  , respectively.  x  is the Dirac delta function, 

1m  and 2m  are the mass per unit length and EI1 and EI2 are the bending stiffnesses of the 

two beam sections,   is the piezoelectric coupling term, and v(t) is voltage across the 

piezoelectric layer. These parameters are determined by the geometric and material properties 

of the beam as follows. 
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



 




   


 

  

  (3) 

where hpc is the position of the centre of the piezoelectric layer to the neutral axis. e31 is the 

piezoelectric stress constant. The linear-electroelastic constitutive relation for the 

piezoelectric material is expressed as: 

      31 33 31 1, , S

eD e S Ex t x t t    (4) 

where S(x1,t) is the bending strain, De(x1,t) is the electric displacement, 
33

S  is the permittivity 

at constant stress. The electric field in the piezoelectric transducer in terms of the voltage 

across it can be expressed as    3 pE v ht t  . According to the Euler-Bernoulli beam 

theory, the average bending strain in the piezoelectric transducer can be expressed as

   2 2

1 1 11
, ,pcS hx t w xx t      . Therefore, Eq.(4) becomes: 
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  
   

2

1 1

31 331 2

1

,
, S
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p

w x t v t
D e hx t

x h



 


  (5) 

Integrating the electric displacement over the electrode area and then differentiating with 

respect to time provides the current ip(t) flowing out of the piezoelectric transducer as follows: 

  
   1

1

3

1 1

20
1

,L

p p
x

w x t dv t
i dx Ct

x t dt





 

    (6) 

where 33 1

S

p pC bL h  represents the capacitance of the piezoelectric transducer, and 

31 p pce b h    is the piezoelectric coupling term. The clamped boundary condition implies 

that 
 2

1

1

0,
0

w t

x t




 
 at x1=0. Eq.(6) thus becomes: 

  
   

1 1

2

1 1

1

,
p p

x L

w x t dv t
i Ct

dtx t





 

 
  (7) 

The governing equations of the electromechanical system are formed by Eq.(2) and Eq.(6). In 

the following, the mode shapes of this system are determined. Then, based on the calculated 

mode shapes, the modal superposition method is employed to derive the closed-form solution 

of the electromechanically coupled equations.  

2.1. Modal analysis 

To determine the natural frequencies and mode shapes of the beam, the damping and the 

coupling terms are dropped first. The governing equations of the beam are simplified to be: 

 

 
 

 
 

4

1 1 2

1 1 1 14

1

4

2 2 2

2 2 2 24

2

0

0

d x
EI m x

dx

d x
EI m x

dx


 


 


 





 



  (8) 

where  1 1x  and  2 2x  are the mode shapes of the beam sections with and without the 

piezoelectric layer. Their solution forms are as follows: 

 
 

 

1 1 1 1 1 1 1 1 1 1 1 1 11
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    

   


   

  (9) 
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in which 4 2

k k k km E I  , k = 1, 2. The boundary conditions (i.e., clamped, lumped tip mass 

and continuities) are expressed as follows: 

 

 

 

 

   

   

   
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2
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0 00
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0t
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 

  

 

    


    

     
      

  (10) 

By substituting Eq.(9) into Eq.(10), simplifying and equating the determinant of the 

coefficient matrix to be zero for non-trivial solutions, one obtains: 

 
   

   
1 1 2 3 3 5 4 7 1 2 2 4 3 6 4 8
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     


     
  (11) 

where  

   
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
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Solving Eq.(11) which is a polynomial equation of   yields the natural frequencies of this 

cantilevered beam. The corresponding mode shapes can then be determined by substituting 

the calculated natural frequencies back into the boundary condition equations to seek the 

solutions of the coefficients of the trigonometric functions in Eq.(9). 

2.2. Frequency response of voltage output  

The orthogonality relations of the beam are as follows: 

 

           

 
 

 
     

1 2

1 2

1 2

1 2

1 1, 1, 1 2 2, 2, 2 2, 2,1 1 2 2 2 2

0 0

4 4

1, 2,1 2 2

1 1, 2 2, 2 2 2, 2,1 2 2 24 4

1 20 0

L L

j i j i t i j ij

x x
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 
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where subscripts i and j represent the ith and jth vibration modes. Using the modal 

superposition, the relative displacement along the beam can be expressed as the series of the 

product of mode shape functions and modal coordinates as: 

 

     

     

1 1,1 1

1

2 2,2 2

1

,

,

r r

r
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r
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w x t x t

 

 














 





  (13) 

Substituting Eq.(13) into Eq.(2), multiplying by  1, 1r x  and  2, 2r x , integrating over 

each beam section, and then using the orthogonality relations, the modal mechanical 

governing equation can be obtained: 
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  
   

and Acc is the amplitude of the acceleration of the base  bw t . In steady state, the voltage 

response has the form of   j t

pv V et
 . The modal response can then be obtained as: 

  
 

2 2 2

j t
r cc r p

r

r r r

A V e
t

j

 


    




 
  (15) 

The relative displacement at the free end can thus be expressed by substituting Eq.(15) into 

Eq.(13): 

  
  2, 2

2 2 2 2
1

,
2

j t
r cc r pr

r r r r

A V eL
w L t

j

 

    








 
   (16) 

Substituting Eq.(13) into Eq.(7) yields the modal circuit governing equation: 

 
 

 
 

1

r
p p r

r

ddv tt
C i t

dt dt








    (17) 

Considering that the PEH is shunted to a resistive load ACR  implying    p ACi v Rt t , then 

combining Eq.(17) and Eq.(15), one can solve for 
pV
 
as: 

 
2 2

1

2

2 2
1

2

1

2

r cc
r

r r r r
p

r
p

AC r r r r

j A

j
V

j
j C

R j




    




    









 

  

   
   





  (18) 
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3. SDOF representation model 

In consideration of the complexity of the derivation process and the final expression of the 

distributed parameter model, when the energy harvester is shunted to a complicated interface 

circuit, it can be anticipated that the corresponding analysis will be very difficult. To address 

this issue, we propose a simplified SDOF representation model of the partially covered 

piezoelectric energy harvester, which, to our best knowledge, has not been reported in the 

literature. The proposed method provides a way to model the energy harvester as a SDOF 

system whose equivalent lumped parameters can be directly determined from the material and 

geometric parameters of the energy harvester system.  

 

Figure 2. SDOF representation model of the partially covered cantilevered PEH. 

By using the relationship between the bending moment and the beam deflection from Euler 

beam theory, the functions that describe the static deflections under gravity of the two beam 

sections with and without piezoelectric coverage are derived. For the section with 

piezoelectric coverage (i.e., 1 10 x L  ), the deflection shape, y1(x): 

        4 3 22

1 1 1 1 1 2 2 1 11 1 1 2 2 1 2 1 2

1

4 6 22
24

t t

g
y m x m L m L M x xx m L m L ML L L L

EI
           (19) 

where g is the gravitational constant. Combining with the continuity conditions of 

displacement and slope at the intersection, the deflection of the section, y2(x), without 

piezoelectric coverage (i.e., 2 20 x L  ) is: 

         4 3 22
2 2 2 2 2 2 2 1 2 12 1 12 2 2

2

1
4 6

24
t t

y m gx m L M gx gx y x yx L Lm L M L
EI

         (20) 

To represent the cantilevered PEH by a linear SDOF model as shown in Figure 2, the 

equivalent lumped parameters (i.e., the equivalent stiffness K and the equivalent mass M) are 
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assumed to be concentrated at the free end. The following procedure determines K and M. 

First, the static deflection at the free end of the beam under gravity is calculated: 

 
 

 2 2

static tM M g
y L

K


   (21) 

where Mstatic is the equivalent static mass of the beam. Also the static deflection at the free end 

caused by the weight of the beam only without tip mass is: 

  2 2    at  0static
t

M g
y ML

K
    (22) 

Combining Eq.(21) and (22), the equivalent stiffness of the beam can be derived: 

 
   

1 2

3 2 2 3

2 2 2 1 2 2 1 2 2 1 2 2 12

3

, 0 3 3

t

t

M g EI EI
K

y y L M EI L EI L L EI L L EI LL
 

    
  (23) 

The Rayleigh’s method is used to calculate the natural frequency of the cantilevered beam 

without the tip mass and then the dynamic equivalent mass at the free end of the beam. The 

maximum potential energy P in the beam is: 

 
1 2

2 2
2 2

1 21 2
1 22 20 0

1 22 2

L Ld y d yEI EI
P dx dx

dx dx

   
    

   
    (24) 

The maximum kinetic energy T in the beam is: 

  
1 22 2 2 2 2 2

1 1 1 1 2 2 2 2 2 2
0 0

1 1 1

2 2 2

L L

n n t nT A y dx A y dx M y L          (25) 

where ωn is the natural frequency. Equating the maximum potential energy (P) to the 

maximum potential energy (T) yields: 

 
5 9

2

1 1

0 0

p q

n p q

p q

n L d L
 

    (26) 

where 

 

 

  

 

 

2 3 2 2 2
0 1 2 2 2 2 2 2

22 2

1 1 2 2 2 2

2

2 1 2 2 2 2 2 2

2 2 2 2 2
3 1 2 2 2 1 2 2 2 2 1 2

2

4 1 2 1 2 2

2 2

5 1 2 1

756 3 15 20

11340 2

22680 2

7560 2 4 2 2

11340

2268

t t

t

t t

t t t

t

n EI EI L m L m L M M

n EI EI L m L M

n EI EI L m L M m L M

n EI EI m L m m L m L M m L M M

n EI EI m m L M

n EI EI m

   

  


  


    


 



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 

  

2 6 3 3 2 2 2 3
0 1 2 2 2 2 2 2 2

5 2 2 2
1 1 2 2 2 2 2 2 2 2

3 3 3 3 2 2 2 2

2 2 2 1 2 2 2 2 2 1 2 24

2 2 2 2 2 3

2 2 2 1 2 2 2

2 91 819 2484 2520

126 2 13 78 120
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252

240 174 180

t t t

t t t

t t

t t t
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EI m L EI m L EI m L M EI m L M
d EI L
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   

   

  


   3

1

3 3 3 3 2 3 2 2 2 2 2
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2

4 2 2
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315 36 13 1890 216 78
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t
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t t t t t

EI M
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d EI L
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E
d EI L

 
   

     
        



3 3 2 3 2 3 2 2 2
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2 3 3 2 3 2 2 2
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t t
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d EI L m L m m L m L M m m L M

    
       

     

 
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d

 

    
       

    

  2 2

2 1 2 2

2 3

9 2 11182

tEI m m L M

d EI m























 




 

Recall that the equivalent stiffness of the beam at the free end ha0073 been already derived in 

Eq.(23), the equivalent dynamic mass is thus: 

 
2dynamic

n

K
M M


    (27) 

It is noteworthy that this is an electromechanical system, because of the presence of a 

piezoelectric transducer. Therefore, for the piezoelectric effect, one more lumped parameter is 

needed to be determined, i.e., the equivalent electromechanical coupling coefficient of the 

piezoelectric transducer. As the equivalent parameters are assumed to be located at the free 

end, Eq.(6) is rearranged as: 

  
 

 
 

 

1 1

2

1 1

2 2

2 21

, 1
,

,p p

x L

w x t dv t
i w CL tt

w L tx t dt




 
  

   

  (28) 

Substituting Eq.(13) into Eq.(28) and considering the first mode only yields: 

  
 

 
 

   

1 1

1,1 1 1
2,1 2

2,1 21

1
p p

x L

d x d dvt t
i CLt

Ldx dt dt

 
 




 
  
  

  (29) 

   2,1 12
d dtL t   is actually the velocity of the beam at the free end, i.e.,  2 ,dw dtL t . The 

equivalent electromechanical coupling coefficient is obtained as: 
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 

 
1 1

1,1 1

2,1 21

1

x L

d x

Ldx







    (30) 

By using the derived static deflection function (i.e., Eqs.(19) and (20)) to approximate the 

first mode shape function of the beam, the equivalent electromechanical coupling coefficient 

can be expressed as: 

 
   

   

   

3

2 1 1 2 1 2 2 2 11 2 1 2

3 4 2 2
2 1 1 1 2 2 1 2 21 2 2 1 2 1

3 3
1 2 1 2 1 21 2

4 12 12 2

33 4 12 18 8

8 3

t

t

EI L m EI L L m EI L ML L L L

EI L m EI L EI L L mL L L L L L

EI EI L L ML LL L

  
 

        
 

      

  (31) 

Therefore, the dynamic behavior of the cantilevered PEH with partial piezoelectric coverage 

can be equivalently represented by the SDOF model. The governing equations can be 

expressed as: 

 

         

 
    0

b

p

AC

Mu Du Ku v Mwt t t t t

v t
C v ut t

R

    



  


  (32) 

where 2 nD M   is the damping coefficient that can be calculated according to the 

damping ratio   of the continuous system, and ACR  is the resistive load connected to the 

piezoelectric transducer. The displacement at the free end  2 2 ,w L t  is redefined as u for 

brevity. Another way to convert Eqs.(14) and (17) into the lumped form around the 

fundamental natural frequency as Eq.(32) is dividing Eq.(14) by  2,1 2L , followed by 

rearranging using a variable substitution      2,1 12
u Lt t  . This leads to the equivalent 

lumped parameters as follows. 

 
   

   

2

1

2 2

2,1 2,12 2

1 1 1

2

2,1 2,12 2

1
     

2
      

M K
L L

D
L L



 

  

 

 

  

  (33) 

The reason for not preferring to derive the equivalent lumped parameters by this means is that 

these are mode shape dependent, thus the final expressions are comparatively complicated 

and implicit. For the lumped parameter model described by Eq.(32), one can easily obtain the 

expression of the relative displacement as: 
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  
2 2

1 1 12

cc p
j t

A V
Mu et
j



   





 

  (34) 

From the analytical solution of the distributed parameter model, by neglecting contributions 

from higher modes, Eq.(16) becomes: 

  
   2,1 1 2,1 12 2

2 2 2 2

1 1 1

,
2

cc p j t
A VL L

w eL t
j


   

   




 
  (35) 

Note that from Eq.(33), one obtains the relation equation  2,1 12
M L   . Then, based on 

the comparison between Eqs.(34) and (35), it is found that a correction factor μ should be 

introduced to the forcing term Acc to improve the prediction based on the SDOF model as 

given below. 

          
1 2

1 2

1, 1 1 2, 2 2 2,1 2 22,1 1 2,12 2

0 0

L L

r r r t

x x

m dx m dx Mx x LL L      
 

  
    

  
    (36) 

The analytical mode shape function of the beam with a varying cross-section is difficult to 

calculate. Therefore, to simplify the calculation of μ, the derived static deflection functions 

Eq.(19) and Eq.(20) are used to approximate the exact first mode shape. The correction 

factor μ can thus be derived in the explicit form as: 

 

  3 2 2 33 1
2 1 2 1 2 12 1 1 2 2 22 12

2

3 2 2 31 2 1
2 1 2 1 2 1 2

2

3 12 18 84 3

24
8 24 24 8

n

t

EI
L L L L L LEI L m EI L mL L

EI

EI EI EI
L L L L L L EI M

EI




  
    

  
  

    
   

  (37) 

The forcing term in Eq.(32) should be corrected by multiplying with μ, and the resultant 

governing equations of the electromechanical system become: 

 

         

 
    0

b

p

AC

Mu Du Ku v Mwt t t t t

v t
C v ut t

R

    



  


  (38) 

Indeed, this electromechanical system has an additional electrical degree-of-freedom (DOF) 

v(t). Throughout this paper, it is simply referred to as a SDOF system as this system has only 

one mechanical DOF. 
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4. Comparison of SDOF and distributed parameter models 

In this section, frequency domain analyses are performed to investigate the voltage responses 

of the developed SDOF representation model. A constant acceleration field of Acc= -1 m/s2 is 

applied onto the system. The resistance load is set to be 1210  , i.e., the circuit connection 

can be regarded as an open-circuit condition. The system damping ratio   is assumed to be 

0.008. Comparisons between the developed SDOF model and the distributed parameter model 

(analytical model) are then presented to verify the proposed equivalent SDOF representation. 

The results of the uncorrected SDOF model, i.e., without using the correction factor, are also 

provided to clearly demonstrate the improvements brought by the introduction of the 

correction factor. The geometric and material parameters of the system used in the following 

case studies are listed in Table 1. 

Table 1. Geometric and material parameters of the system under investigation. 

Parameters Values Materials Parameters Values 
Substrate beam length 62.5 mm 

Steel 
Mass density 7850 kg/m3 

Substrate beam width 10 mm Young’s Modulus 200 GPa 

Substrate beam thickness 1 mm 

PZT-5A 

Mass density 7800 kg/m3 

Piezoelectric layer length 28 mm Young’s Modulus 66 GPa 

Piezoelectric layer width 8 mm e31 -12.5 C/m2 

Piezoelectric layer thickness 0.2 mm 33  1.3281×10-8 F/m 

Since the utilization of the vibration mode approximated by the static deflection plays a 

significant role in the development of the SDOF representation, the analytical and the static-

deflection approximated vibration modes are firstly compared to confirm the rationality of 

this approximation treatment. For different tip mass Mt, Figure 3 compares the fundamental 

vibration modes obtained from the static-deflection approximation, the analytical method and 

the finite element (FE) simulation by using the commercial software ANSYS. The absolute 

errors of the static-deflection approximated mode shape as compared with the analytical 

solution and the FE simulation result are also provided. It is worth mentioning that the errors 

should refer to the right side y-axis. It can been seen that the solid line which denotes the 

approximated result, the dash-dot line which denotes the analytical result and the dotted line 

which denotes the FE result almost coincide with each other. The absolute errors of the 

approximated vibration modes are very small. The discontinuities in the error curves appear at 

the position corresponds to the interface between the sections with and without piezoelectric 

coverages. In addition, by comparing Figure 3(a) to (d), it can be noted that with an increase 

of Mt, the absolute error decreases, which means that the accuracy of the approximated 
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vibration mode increases. Moreover, the absolute error of the approximated vibration mode is 

extremely small as compared with the analytical result for the cases when Mt is relatively 

large (Figure 3(b), (c) and (d)). Therefore, it is reasonable to use the static deflection to 

approximate the fundamental vibration mode of the cantilevered energy harvester. 

 

Figure 3. Comparisons of the fundamental vibration modes approximated by the static deflection and 

predicted by the analytical method and FEA: (a) Mt=0 g; (b) Mt =10 g; (c) Mt =20 g; (d) Mt =30 g. 

Figure 4 shows the voltage responses of the corrected SDOF, uncorrected SDOF, FE and 

distributed parameter models for the cases with different tip masses. For the analytical results 

derived by the mode superposition method, three modes are used in the calculation.  
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(a) (b) 

  
(c) (d) 

Figure 4. Comparisons between the voltage responses of the uncorrected SDOF, corrected SDOF, 

analytical and FEA models: (a) Mt=0 g; (b) Mt =10 g; (c) Mt =20 g; (d) Mt =30 g.  

From Figure 4(a) corresponding to the case of Mt = 0 g (i.e., no tip mass), both the 

uncorrected and corrected SDOF models yield the same prediction of the fundamental natural 

frequency as 232.2 Hz which is slightly different from the predication of the distributed 

parameter model (230.8 Hz) and that of the FE model (230.4 Hz). So the relative error for the 

approximately predicted natural frequency is 0.61% as compared with the analytical result. 

This shows both the SDOF models provide a good estimation of the fundamental natural 

frequency. However, in terms of the voltage amplitude response, the peak value in the voltage 

response of the uncorrected SDOF model is about 1.99 V and the actual values from the 

analytical and the FE models are 3.14 V and 3.10 V, respectively. The relative error in the 

prediction of the voltage amplitude based on the uncorrected SDOF model is 36.62% with 

respect to the analytical model. The peak value of voltage for the corrected SDOF model is 

about 3.15 V which indicates only a 0.32% relative error as compared to the distributed 

parameter model. It can be found that for the case where there is no tip mass, the accuracy of 
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the SDOF representation is significantly increased after the introduction of the correction 

factor.   

Figure 4(b)-(d) shows a few more cases of different tip mass Mt. For the corrected SDOF 

model, it can be found that in terms of both the fundamental natural frequency and the voltage 

amplitude response, the voltage estimations with sufficient accuracy can always be ensured. 

For the uncorrected SDOF model, it can be noted that with an increase of Mt, the relative 

predictive accuracy increase (i.e., the errors decrease). Among these four cases, even when Mt 

is increased to 30 g (Figure 4(d)) a slight difference between the results from the uncorrected 

SDOF model and the distributed parameter model is still noticed. This implies that the 

uncorrected SDOF model is suitable for use in the case where the tip mass is relatively large. 

To further reveal the effects of Mt on the prediction accuracy of the SDOF model, Figure 5 

shows the relative errors of several parameters (i.e.,  ,   and n ) for different   which 

is the ratio of Mt to the mass of the entire beam at static condition. Recalling that the 

correction factor  , the lumped electromechanical coefficient   and the fundamental 

natural frequency n  can be determined approximately both using static deflection and 

analytically using the distributed parameter model. By treating the values from the distributed 

parameter model as the actual ones, Figure 5(a) shows the relative errors of the approximately 

determined values of  ,   and n  for different values of Mt. It can be noted that with an 

increase of Mt, the relative error of n  decreases. Although the relative errors of   and   

first increase then decrease, the overall trends can be considered as decreasing. Since the 

estimations of all these three parameters based on the SDOF model become more accurate 

with an increase of Mt, it can be anticipated that the prediction accuracy in terms of the 

maximum voltage amplitude should also increase. This is also reflected in Figure 5(b). The 

solid line and the dash-dot lines denote the relative errors of the corrected SDOF model and 

the uncorrected model, respectively. In addition, it is noteworthy that the data of the 

uncorrected SDOF model refers to the right-side y-axis, since the relative error of the 

uncorrected model is larger than that of the corrected SDOF model by several orders of 

magnitude. Figure 5(b) shows the effect of Mt on the SDOF model in the prediction of the 

maximum voltage amplitude. With the increase of Mt, the overall trends of the relative errors 

of the predicted maximum voltage amplitude are decreasing which means that the prediction 

accuracies of the maximum voltage amplitude increase. At small  (i.e, Mt), the relative error 

of the uncorrected SDOF model is quite large for practical use. At 10  , the relative error 
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of the uncorrected SDOF model is reduced to 0.79%, which, however, is still larger than the 

maximum relative error of the corrected SDOF model (0.72%). Compared to Figure 5(a), a 

notable phenomenon observed in the corrected SDOF model is that although the relative 

errors of  ,  and n  are relatively large for the case when the tip mass is near zero, the 

same fact does not hold for the relative prediction error of the maximum voltage amplitude. 

Contrary to the expectation, when Mt is relatively small, the prediction of the maximum 

voltage of the corrected SDOF model turns out to be accurate. This is because the relative 

errors of   and   are of opposite nature which leads to an improved relative accuracy. 

Indeed, the underestimation of   and overestimation of   balance out, leading to a 

significant reduction of the error in the maximum voltage amplitude. Since the maximum 

relative error of the corrected SDOF model in the prediction of the maximum voltage 

amplitude is ≈0.72% when  ≈1, one can conclude that the corrected SDOF model can 

always provide sufficient accuracy.  

  

(a) (b) 
Figure 5. Comparison between the approximately obtained values and analytically determined values: 

(a) relative errors of correction factor  , electromechanical coupling coefficient   and natural 

frequency n , (b) relative errors of maximum voltage amplitudes of corrected and uncorrected SDOF 

models. 

5. Energy harvesting interface circuits 

In this section, the practical interface circuits are taken into consideration. The cantilevered 

PEH is connected to a standard energy harvesting (SEH) circuit, i.e., the AC-to-DC full-wave 

bridge rectifier and a parallel synchronized switch harvesting on inductor (P-SSHI) circuit. In 

the modelling of these circuits, Shu’s method (Shu et al., 2006; Shu et al., 2007) provides the 
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analytical expressions of the power and the rectified voltage, but does not offer waveform 

information about the response. In addition, as aforementioned, the EIM method (Liang et al., 

2012) provides a clearer view of the energy flow in the energy harvester system. It uses the 

first-order harmonic to approximate the waveform of the response. By including higher-order 

harmonic components in the calculation of the EIM method, it has the potential to reduce the 

distortion in the waveform response and give a more accurate waveform solution. However, 

the final expression of the harvested power in the EIM method is a function of the rectifier 

block angle which cannot be analytically determined and thus cannot calculate the rectified 

voltage and give the explicit expression of power in terms of load resistance. An improved 

EIM method is therefore required to tackle this drawback. 

 

Figure 6. Equivalent circuit representation of a SDOF PEH shunted to sophisticated harvesting 

interface circuits. 

Figure 6 shows the schematic of the equivalent circuit representation of the SDOF PEH 

shunted to the sophisticated harvesting circuit. For the given parameters listed in Table 1 and 

Mt = 30 g, the equivalent parameters of the SDOF PEH model are calculated as M = 31.1 g, K 

= 2407.5 N/m, D = 0.1385 Ns/m,   = 1.022,   = 9.25×10-4 N/V and Cp = 14.9 pF. By 

using the mechanical-electrical analogies, the mechanical part is equivalent to an electrical 

model. The mechanical parameters are correspondingly converted into the electrical 

parameters using the following relationships. 

 

   

   

2

0

2

0

2

0

eq b

eq

L M v Mwt t

R D i ut t

C K

     


   
  

  (39) 



 

21 

 

5.1. Analysis of SEH interface circuit 

Due to the existence of the full-wave rectifier bridge, the system possesses nonlinearity. The 

characteristic waveform of the voltage across the DC resistance load is not harmonic anymore. 

By using the equivalent impedance modelling method which decomposes the voltage 

response into harmonic components and only considers the fundamental one, the equivalent 

impedance of the SEH interface circuit can be obtained as (Liang et al., 2012): 

  21
sin sin cosSEH

p

Z j
C

   


       (40) 

where   is the rectifier blocked angle in a half cycle and is related to the rectified voltage  

rectV  by: 

 cos 1 2 rect

oc

V

V
     (41) 

where ocV  is the magnitude of the open-circuit voltage that is related to the displacement 

amplitude by: 

 oc

p

U
V

C


   (42) 

From Eq.(40), it is noted that the resistance and the reactance corresponding to the real 

component hR  and imaginary component EX  of the equivalent impedance for the SEH 

interface circuit are given by: 
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It is known that the imaginary component (i.e., reactance) stores and releases energy 

periodically, and does not dissipate energy. Only the real component (i.e., resistance) of the 

equivalent impedance absorbs the energy from the source, i.e., converts mechanical energy 

into electric energy. Assuming that the full-wave rectifier bridge can realize the ideal AC-to-

DC conversion and does not dissipate any energy, the harvested power by the SEH circuit is 

then equal to the energy dissipated by hR  and can be evaluated by using the following 

equation.  
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where 
0 0LX L  and  

0 01CX C   are the reactance of L0 and C0, respectively. Rd is 

the dissipative component that is composed of the rectifier dissipation. Since it is assumed 

that the rectifier bridge can ideally perform the AC-to-DC conversion with no dissipative 

component, Rd equals to zero. When the system is in steady state which implies that the 

variation of the charge stored in the filtering capacitance is null over a cycle, by considering 

the balance of the charge flowing through the DC load, rectV  can be expressed by the 

amplitude of the displacement U as: 
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Combining Eq.(45) and Eq.(42) gives: 
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Substituting Eq.(46) into Eq.(41), one obtains the equation for calculating the rectifier block 

angle from the DC resistance load Rload. 
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The expression of the harvested power of the SEH interface circuit is then obtained by 

substituting Eq.(43) into Eq.(44). 
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 (48) 

As the rectified voltage rectV  is constant under steady-state operation and has the relationship 

with the harvested energy as 2

h rect loadP V R , the rectified voltage can thus be calculated: 

 rect h loadV P R   (49) 

Shu et al. (2006) analysed the same interface circuit based on the principle of energy balance 

and derived the expression of the rectified voltage. Incorporating the consideration of the 

correction factor, the expression of Vrect from (Shu et al., 2006) should be rewritten as follows: 
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(50) 

The harvested power can then be calculated by using Eq.(51).  
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  (51) 

The modified EIM method for the SEH interface circuit will be verified by comparing the 

result with that from Eqs.(50) and (51), given by Shu et al. (2006). 

5.2. Analysis of P-SSHI interface circuit 

In the similar way, the equivalent impedance of the electrical part of the P-SSHI interface 

circuit can be written as (Liang et al., 2012): 

    
41

1 cos1 cos sin cos
1

P SSHI

p

Z j
C

   




  
       

  (52) 

where   is the voltage inversion factor that is related to the quality factor Q due to the 

energy loss, mainly from the inductor in series with the switch by  2Q
e





  ;   is the 

rectifier blocked angle in a half cycle and is related to the rectified voltage rectV  by: 
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The relationship between the open-circuit voltage ocV  and the displacement amplitude U 

described by Eq.(42) still holds for the P-SSHI interface circuit. The real and imaginary 

components of the equivalent impedance of the P-SSHI interface circuit are: 
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For the same reason as explained for the SEH interface circuit, the energy dissipated by hR  

represents the energy harvested by the P-SSHI interface circuit. The harvested power can be 

evaluated by using Eq.(44). From the perspective of the balance of the charge flowing through 

the DC resistance load, one can find the relationship between the rectified voltage of the P-

SSHI interface circuit and the amplitude of the displacement as: 
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Combining Eq.(55) and Eq.(42) yields: 
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Substituting Eq.(56) into Eq.(53) gives the expression of the rectifier blocked angle in a half 

cycle for the P-SSHI interface circuit: 
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The harvested power of the P-SSHI interface circuit is evaluated by substituting Eq.(54) into 

Eq.(44): 
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(58) 

For the P-SSHI interface circuit, the relationship between the rectified voltage and the 

harvested power is still the same as that for the SEH interface circuit; so Eq.(49) is still 

applicable for calculating the rectified voltage of the P-SSHI interface circuit. Shu et al. (2007) 

also developed a method for analysing the same P-SSHI interface circuit. Due to the existence 

of the correction factor from the mechanical domain that acts on the forcing term, the 

expression in (Shu et al., 2007) should be slightly modified as follows: 
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  (59) 

The harvested power can then be obtained by using Eq.(60).  
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  (60) 

The modified EIM method for the P-SSHI interface circuit will be verified by comparing the 

present results with those from Eqs.(59) and (60) given by Shu et al. (2007).   

6. Verification of Modified EIM method 

The mechanical part of the cantilevered PEH has already been represented by the developed 

SDOF model and converted into an equivalent circuit model. The SEH and P-SSHI interface 

circuits have been also converted to equivalent AC electrical components by using the 

modified EIM method. The energy harvesting performance of this system can then be 

evaluated. The results obtained by using the methods proposed by Shu et al. (2006); (Shu et 

al., 2007) are also provided for comparison. 

6.1.  Results for SEH interface circuit  

  

Figure 7. Frequency responses of Vrect for the SEH interface circuit from the modified EIM method and 

Shu’s method (Shu et al., 2006). 

Figure 7 shows the frequency responses of the rectified voltage for the case when the PEH is 

shunted to the SEH interface circuit. It can be seen that the results from the modified EIM 

method agree well with those from the Shu’s method (Shu et al., 2006), which has already 

been validated both numerically and experimentally. For a further quantitative comparison, 
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Figure 8 shows the relative error of the result obtained from the modified EIM method as 

compared to that from the Shu’s method (Shu et al., 2006). It can be observed that the relative 

errors are very small and negligible. In particular, the relative error becomes extremely small 

near the resonance frequency. This establishes the estimation accuracy of the modified EIM 

method to reach a higher degree near the resonance frequency. 

  

Figure 8. Relative error of Vrect for the modified EIM method as compared with the Shu’s method (Shu 

et al., 2006). 

Based on the finding from the frequency response of Vrect, one can expect that the optimal 

output power of the SEH interface circuit from both methods should also be in a good 

agreement, which is confirmed in Figure 9(a). It can be observed that in the vicinity of the 

resonance frequency, the predictions by both methods are very close; while farther away from 

the resonance frequency, the result of the modified EIM method deviates from that of the 

Shu’s method (Shu et al., 2006). In general, the modified EIM method demonstrates a 

satisfying level of accuracy. 

 

Figure 9. Optimal output power from the SEH interface circuit predicted by the modified EIM method 

and the Shu’s method (Shu et al., 2006). 
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6.2. Results for P-SSHI interface circuit 

 

 Figure 10. Frequency responses of Vrect for the P-SSHI interface circuit from the modified EIM method 

and the Shu’s method (Shu et al., 2007). 

Figure 10 shows the frequency responses of the rectified voltage for the case when the PEH is 

shunted to the P-SSHI interface circuit. The same conclusion is found to be still valid. The 

results from both the modified EIM method and the Shu’s method (Shu et al., 2007) are very 

close. The relative error of the result from the modified EIM method presented in Figure 11 

further confirms that the relative errors are negligible. Moreover, for the P-SSHI interface 

circuit, the same phenomenon is also observed in Figure 11. Around the resonance frequency, 

the relative errors of the predictions for the rectified voltage from the modified EIM method 

are extremely small. This is a useful finding as the performance around the resonance 

frequency is usually of most interest.  
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Figure 11. Relative error of Vrect for the modified EIM method as compared to the Shu’s method (Shu et 

al., 2007). 

Furthermore, the optimal power output responses obtained from both the methods are 

presented and compared in Figure 12. As expected, the solid and dash curves that denote the 

data from the modified EIM method and the Shu’s method (Shu et al., 2007) almost coincide 

with each other, indicating a very good agreement. The predictions from both the methods 

tally with each other the best near the resonance frequency. Since the Shu’s method has 

already been validated through numerical simulations (Shu et al., 2007), we can conclude that 

the results from the modified EIM method are also accurate and reliable. 

 

Figure 12. Optimal output power from the P-SSHI interface circuit predicted by the modified EIM 

method and the Shu’s method (Shu et al., 2007). 

7. Conclusions 

In this paper, we propose a modelling methodology for a partially covered cantilevered PEH 

shunted to SEH and P-SSHI interface circuits. In the mechanical domain, a SDOF 

representation model is proposed to describe the dynamic behaviour of the system. The 
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electromechanical coupling effect is also included into consideration, and the equivalent 

electromechanical coupling coefficient is expressed in an explicit form by using the static-

deflection approximated fundamental vibration mode. Based on the comparison between the 

relative displacement transmittances at the free end of the distributed parameter model and the 

SDOF model, a correction factor is proposed to modify the SDOF model for improving the 

accuracy. The corrected SDOF model is verified through the comparison with the distributed 

parameter model and the finite element model. In the electrical domain, a modified EIM 

method is proposed for the analysis of the SEH and P-SSHI circuits. The improved EIM 

method provides the explicit analytical expression of the harvested power in terms of the load 

resistance rather than the rectifier block angle (which cannot be determined analytically in the 

conventional EIM method). The interface circuits are converted into equivalent AC electrical 

components (EIM method), which are then connected with the equivalent circuit 

representation of the corrected SDOF mechanical model. The energy harvesting performance 

is then evaluated. A good agreement between the results of the modified EIM method and the 

Shu’s methods is observed. The combination of the developed SDOF representation model 

and the improved EIM method enable the mechanical and the electrical parts of the PEH 

system to be bridged easily. Therefore, the methods developed in this work provide an 

efficient and accurate tool for the future design and optimization of such kind of PEH systems 

by taking more practical factors (i.e, partial piezoelectric coverage and nonlinear conditioning 

interface circuits) into account. 
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